Quotations


Thought for Us


The important thing is not to stop questioning


A. Einstein

****************************************************************


Dark Matter & Modified Gravity


Dark Matter & Modified Gravity are being discussed at the Dark Matter & Modified Gravity Conference from 6 to 8 February 2019 at RWTH Aachen University, Germany. Interdisciplinary perspectives on astrophysical and cosmological observations as well as problems in the Standard Model of particle physics may imply the existence of Dark Matter and/or a modification of our theory of space and time. The numerous Dark Matter and Modified Gravity approaches, even in the light of the vast amount of relevant collider based and astrophysical observations is complex, but the overlap of the research may allow for a simplification. One focus of this conference is Dark Matter searches at the Large Hadron Collider (LHC)and the connection between theories of gravity. Discussions are  planned on choosing between the two research programs, and choosing between different models in each research program. 
 
In this regard, a return of cosmology to Newtonian mechanics is herein proposed.      
 
Since the 1930's, astrophysical observations have implied the existence of Dark Matter because high velocities were measured. In the 1970's, the M31 spiral galaxy was extensively studied and shown to produce a flat rotation curve that also supported the notion that Dark Matter exists. Only a decade ago, GL showed the Bullet Cluster could not stay together without the existence of Dark Matter. GL stands for gravitational lensing. In the above figure, the red area represents X-ray heating and the blue shows the Dark Matter derived from GL.  However, direct experimental proof of a Dark Matter particle has not yet been found.  In the alternative to the existence of Dark Matter,  Modified Gravity has been proposed, but the agreement between numerical simulations of MOND and astrophysical observations is still only numerical, and lacking physical basis cannot be verified by experiment.
 
But what if the notion that the existence of Dark Matter inferred from M31 and recent GL data including the Bullet Cluster is not correct?
 
 
It is important to note, the astrophysical observations of Dark Matter were made with velocities inferred using optical redshift in Doppler's effect, and perhaps the redshifts overstated the velocities. In this regard, cosmic dust that permeates the Universe is proposed to redshift the light beyond that emitted from a distant galaxy. If the redshift from dust overstates the velocity of the galaxy to the extent that the galaxy cannot stay together as observed, it would be incorrect to assume Dark Matter exists, and instead, the velocities should be corrected for redshift in cosmic dust. Alternatively, by neglecting the dust redshift, the galaxy velocities would be lower bound by Newtonian mechanics.  Unlike MOND, the redshift in cosmic dust may be experimentally verified and is a well -known phenomenon in laser experiments of NPs in nanotechnology.  NPs stand for nanoparticles. 
 
Since Hubble, redshift of galaxy light in cosmic dust went unnoticed for almost a century because light interaction with NPs was assumed to follow classical physics and increase in temperature upon absorbing a galaxy photon.  However, classical physics is not applicable as the dust is not macroscopic, but rather nanoscopic following the Planck law of QM that requires the heat capacity of the atoms in NPs to vanish, provided the NP atoms are placed under high EM confinement. QM stands for quantum mechanics. As nature would have it, EM confinement is naturally high in NPs because of their high surface-to-volume ratios, and therefore the galaxy photon is almost totally absorbed  in the NP surface. Unable to increase in temperature, the NP cannot expand to relieve the surface heat, thereby providing the EM confinement necessary for the heat capacity of the atoms to vanish. Lacking a thermal response, photon absorption by a NP can only be conserved by a non-thermal mechanism proposed here as simple QED. 
 
Simple QED relies on the high surface-to-volume ratios of cosmic dust NPs  to create, non-thermal standing EM radiation inside the NP across the diameter d having half-wavelength λo/2 = d. In effect, a galaxy photon having wavelength λ is redshifted to λo depending on the NP dimensions, i.e., the energy of the galaxy photon adjusts within the EM confinement defined by the NP dimensions between opposing dust surfaces. The speed of light c corrected for the refractive index n of the dust gives the Planck energy E of the redshifted galaxy light, E = h(c/n)/λo. On Earth, the galaxy light is observed to have wavelength λo with redshift z = (λo - λ)/λ, where λo = 2nd. Once the Planck energy of the galaxy photon absorbed in the dust surface is expended in forming the redshifted galaxy photon, the EM confinement vanishes allowing the redshifted photon to freely travel to the Earth.

By correcting for overstated velocities, galaxy dynamics follows Newtonian mechanics, or the low velocity limit of Einstein’'s general relativity. Either way, cosmology returns to Newtonian mechanics once proposed by Einstein.  For more details, see the tentative Conference Abstract and PPT Presentation. An Audio MP3 file is available. Open PPT and audio files in separate windows. Play the Audio MP3 file and manually follow with the PPT file.


Dark matter research is undergoing a paradigm shift. Over the last few years, many novel theories have been proposed that challenge the standard assumptions made about dark matter. At the same time, new observations and simulation results are providing valuable clues regarding the most fruitful directions moving forward.

The “Novel Ideas for Dark Matter 2019” Workshop at Princeton University attempts to bridge the gap between communities working on non-standard solutions to the dark matter problem. Plenary talks on theory, observations and simulations will be structured into a three day schedule that will provide a broad overview of research avenues of this type. The workshop aims to promote conversations between research communities with ample time for open discussion.

In this regard, the non-standard solution to Dark Matter is described by the effect of cosmic dust in overstating the redshift of galaxies that by the Doppler shift gives the  high velocities observed that suggests Dark Matter exist to hold the galaxies together. See above Dark Matter and Modified Gravity Conference where emphasis is placed on the M31 spiral galaxy and gravitational lensing. In the Novel Ideas for Dark Matter Workshop, cosmic dust redshift is proposed as the cause of the the variability of the Hubble constant.


hits counter